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Regional San Monthly-averaged Ammonium (NH4) Loads (kg d™')
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Figure A.X: (likely to go in appendix) Regional San NH4 loads vs. time.Data: Jassby 2008, LWA 2017, Regional San pers. communication



Nutrient Loads to the Delta
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Nutrient Loads to the Delta
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Nutrient Loads to the Delta How will Delta and nSFE habitats respond to this

abrupt and seemingly large change?
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Mechanistic link well-established in some estuarine and
freshwater ecosystems.

Potential Adverse Impact Pathways

%, Mechanistic link hypothesized by some studies, but uncertain
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What ‘types of change’ might be expect?
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What ‘types of change’ might be expect?
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Material/Energy flow (substrate, food)

Influence path

Possible influence, but uncertain or limited effect considering current project’s focus

More detailed conceptual models and mechanisms relevant to potential
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Which areas of the Delta would potentially be most
influenced by load changes from Regional San?

will depend on multiple factors, including...

1. Contribution of Sacramento River water to the ‘mix’ at a given site.
o f(x,y,t):
m t <« seasonal cycles, interannual variability

2. The magnitudes of biogeochemical processes/transformations that occur
along the flow path Regional San — (x,y)
o f(x,y,t)
m t < seasonal cycles, interannual variability

21



Summer Whole-Delta Mass Balances
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Figure Nuts.4
Nutrient Section
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Figure Nuts.4. Idealized comparison of current and hypothesized-future concentrations along the Sacramento River main stem
during winter/early-spring and summer. On the x-axis, zero represents discharge location. In terms of distance, the right-hand

limit corresponds approximately to Chips Island, at the far east of Suisun Bay.
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Figure Nuts.6
Nutrient Section
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Figure Nuts.6 Semi-quantitative representation of relative changes in DIN, NH4, and NO3
concentrations as a function of the age of Sac River water containing effluent (time since discharge)
and time of year.



Will nutrient concentrations return closer to ~1980 levels?

Many other factors and changes afoot...
AQ and Aflow-routing

Alanduse

Agrazers

AT

Akatt

So, probably not. But past observations perhaps serve as an informative starting point for this current effort...

Regional San Monthly-averaged NH4 Loads (kg d™')
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7 Projected future TN loads (and full conversion of NH4 to NO3)
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How have late-spring/summer (May-Sep) ambient concentrations varied over time?
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How have late-spring/summer (May-Sep) ambient concentrations varied over time?
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How have late-spring/summer (May-Sep) ambient concentrations varied over time?

Station C3 DIN (M)
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How have late-spring/summer (May-Sep) ambient concentrations varied over time?
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How have late-spring/summer (May-Sep) ambient concentrations varied over time?

Station D19 DIN (uM)
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Phytoplankton Scenario 2
HABs/toxins/NH4 (P.2)

2.2 Decreased HAB

abundance translates into

overall decreased toxin
production

Decreased toxin

2.3a Transport + cell lysis

2.4a

concentrations

2.2

Decreased HAB

2.1.a
All conditions
are met

2.1

Decreased [NH4]
(xy.t)

21b

event magnitude

2.3b Transport, in tact cells or cell lysis,
bioavailable toxins

Decreased [NH4] in warm months
Ecologically-meaningful higher growth rate
on NH4 than NO3

Long-residence time

Poor vertical mixing

Sufficiently high temperatures

One or more
conditions not
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A,

Decreased toxin
accumulation in zoops
and benthos

Decreased toxins in
water supply

2.4b

2.4c

Decreased direct
exposure to wildlife

2.4d

Decreased wildlife
exposure via foodweb

Not relevant to HABs

No change in
ecosystem health




—_— Material/Energy flow (substrate, food)

HABs and Phycotoxins

SN Influence path
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------ > Possible influence, but uncertain or limited effect considering Maintenance

current project’s focus
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Other Physical/Biological Factors

Z_ (feedbacks)

Potential Phytoplankton and HAB Responses
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Other Physical/Biological Factors
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Other Physical/Biological Factors
...all are f(x,y,t)

F.1 Temperature
Z_ (feedbacks) F.2 PAR/light penetration
ITTTTToTTTToToooomos * F.3 Residence time
F.4 Vertical Mixing

F.5 Grazers
Potential Phytoplankton Responses...all are f(x,y,t)

F.X Change in above (e.g., F.X.1

Increasing Temperatures) Phyto.1 Overall Productivity and Biomass
Potential Nut Responses - Increase, Decrease, No change
...all are f(x,y,t)

D

Phyto.2 Change in Assemblage

N.1 Decreased [NH4] - Increase in g,, 22’ 23...
- Decrease in 76 1550 (oo
N.2 Increased [NO3] - Nochange

Phytoplankton

N.3 Decreased [DIN] Potential HAB responses...all are f(x,y,t)

N.4 Change in DIN:PO4 HAB.1 HA Productivity or Biomass (seasonal, annual)

- Microcystis: Increase, Decrease
- Other taxa: Increase, Decrease

N.5 DON or PN increase/decrease

N.6 De minimis change HAB.2 Toxin Production
4 - Increase, Decrease, No Change
i Z, (feedbacks) 4

N.d.x _

F.d.x dependencies
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Number of detections, relative frequency (in percent) from point samples, area (ha) and percent cover of the submersed
aquatic plant species detected in the Sacramento-San Joaquin River Delta (waterways area is 639.89 ha)

4212000

4206000 4208000 4210000

4214000 4216000
' '

Scientific name Code Status Fall 2007 Summer 2008
Detections (%) Area (ha) % cover Detections (%) Area (ha) % cover
Egeria densa EGDE Non-native 339 (89) 382.49 59.77 300 (69) 99.64 15.6
Cabomba caroliniana CACA Non-native 1 (0.3) NA NA 36 (8) 1.41 0.2
Myriophyllum spicatum MYSP Non-native 32 (8) 68.03 10.6 78 (18) 20.4 3.2
Potamogeton crispus POCR Non-native 52 (14) 50.8 79 53 (12) 10.03 1.6
Total 424 382.9 59.8 467 174.08 27.2
Ceratophyllum demersum CEDE  Native 107 (28) 283.77 443 180 (41) 59.14 92
Potamogeton nodosus PONO Native 1(0.3) NA NA 10 (2) 6.04 0.9
Elodea canadensis ELCA Native 19 (5) 34.28 5.36 10 (2) 18.29 2.9
Stuckenia spp. STSPP Native 24 (6) 73.02 11.4 32 (N 69.84 10.9
Total 151 294.29 459 232 157.04 24.5
Total submersed species 575 388.35 60.7 699 239.6 374
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Figure 2.3. Species central to this review. Left, submersed species: Egeria densa (top;
photo Katharyn Boyer), Ceratophyllum demersum (middle, photo Ron Vanderhoff), and
Stuckenia pectinata (bottom; photo Katharyn Boyer). Right, floating species: Eichhornia
crassipes (top; photo Bob Case), Ludwigia spp. (center; photo alabamaplants.com),
Hydrocotyle umbellata (bottom; photo southeasternflora.com).



Substantial seasonal and interannual variability...

Predictable?
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Figure 11 Boxplots on NH4, NO3, DIN and TN concentrations at a subset of DWR-IEP stations for the period 2000-2011. The boxes show median
concentration and 25"/75™ percentiles, and the whiskers extend to 1.5x the interquartile range. Anything beyond that are considered outliers and shown with dots.
Note the varying y-axis scales.

Example seasonal cycles, need to select some
better stations



Dominant ‘modes’ of seasonal variations in NH4 concentration

Increase and peak during
© ) cool/cold weather

Low nitrification
Low uptake by algae
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: - Nitrification
Time - Uptake by algae
March-May decrease,
EOF1= D&, D7, D6, D4 (strong) - higher flows
D26 (strong) - dilution
c3 (moderate)

EOF = Empirical orthogonal functions

2 EOFs explained 73% of variance



Dominant ‘modes’ of seasonal variations in NH4 concentration
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Source
I AGRICULTURAL RETURNS
 CALAVERAS
" COSUMNES +MOKELUMNE RIVERS
7 JONES TRACT
[ MARTINEZ - OPEN BAY ENDMEMBER
 SACRAMENTO RIVER
[ SAN JOAQUIN RIVER
| SUISUN BAY WASTEWATER DISCHARGES

YOLO BYPASS

Figure 10 Percent contribution of each end member to water volume at DWR-IEP water quality stations. Data:

DSM2 Model output
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Toxin Sources: Microystin in monthly archived Potamocorbula Amurensis
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- Commonly exceeded OEHHA action level for human
consumption (10 ppb)

- No state standards for protecting biota

- MCY exceeds concentrations that have yielded
subacute affects in secondary consumers (OEHHA,

SFEI 2016 (collaboration with T Otten and R Stewart 2009)
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Figure 2.4. Submersed vegetation (primarily E. densa) coverage of up to 560 hectares within
Franks Tract in the central Delta, 2003-2007 (Figure from Santos et al. 2009).



